ВКЛ / ВЫКЛ: ИЗОБРАЖЕНИЯ: ШРИФТ: A A A ФОН: Ц Ц Ц ЦНАСТРОЙКИ:
Инфофиз
Весь мир в твоих руках, всё будет так, как ты захочешь!
г. Новороссийск
+7 (918) 465-56-36
infofiz.ru@yandex.ru

Инфофиз

Весь мир в твоих руках, всё будет так, как ты захочешь!
МЕНЮ

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур иликолебательный контур.

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C, катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε. Когда ключ Kнаходится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими, т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U0 то в начальный момент времени t1=0 на обкладках конденсатора установятся амплитудные значения напряжения U0 и заряда q0 = CU0.

Полная энергия W системы равна энергии электрического поля Wэл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I0 в момент времени t2=T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля Wм:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t3=T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q0, напряжение тоже равно первоначальному U = U0, а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q(t) конденсатора и смещения x(t) груза от положения равновесия, а также графики тока I(t) и скорости груза υ(t) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

q(t) = q0cos(ωt + φ0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний  и период колебаний  - формула Томпсона

Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q(t) = q0cosω0t

U(t) = U0cosω0t

Для катушки индуктивности:

i(t) = I0cos(ω0t + π/2)

U(t) = U0cos(ω0t + π)

Вспомомним основные характеристики колебательного движения:

q0, U0I0амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

У свободных колебаний со временем амплитуда уменьшается и они затухают. Для того, чтобы колебания не затухали, необходимо воздействовать на колебательную систему внешней периодически изменяющейся силой. Такие колебания называют вынужденными.

Вынужденные электрические колебания называют переменным электрическим током.

Электрический ток, изменяющийся со временем по направлению и по величине по гармоническому закону, называют переменным током.

Рассмотрим переменный электрический ток, изменяющийся со временем по гармоническому закону. Он представляет собой вынужденные колебания тока в электрической цепи, происходящие с частотой ω, совпадающей с частотой, вынуждающей э.д.с.

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = - Ф’ = - (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшим генератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменнаяЭДС - электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

В цепи переменного тока мощность тоже будет менять своё значение. Как правило, нам надо знать среднюю мощность. Для её вычисления удобно пользоваться действующими значениями силы тока и напряжения.

Вольтметр и амперметр переменного тока всегда показывают действующие значения.

Мгновенное значение переменного тока, текущего по активному сопротивлению R, определяется по закону Ома:

где I0 = ε0/R – амплитудное значение силы тока.

Ток по фазе совпадает с э.д.с.

Величина, равная квадратному корню из среднего значения квадрата мгновенного тока, называется действующим значением переменного тока.

Обозначается I.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Действующее (эффективное) значение переменного тока и действующее (эффективное) значение напряжения равно напряжению и силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

Электромагнитное поле и электромагнитные волны.

В окружающем нас мире существуют объекты, которые человек не воспринимает с помощью органов чувств. Для измерения характеристик этих объектов человек может воспользоваться только специальными техническими устройствами. Такими объектами являются электрическое и  магнитное поля.

Изучив явление электромагнитной индукции, Фарадей пришел к выводу, что вихревое электрическое поле возникает при изменении во времени магнитного поля. Изменяющееся во времени магнитное поле можно создать в данной точке пространства, если придвигать к ней магнит или менять силу тока в проводе, который расположен рядом с этой точкой.

В 1864 году английский физик Джеймс  Клерк Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля.

Максвелл предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Переменное магнитное поле порождает электрическое поле с замкнутыми силовыми линиями (линии напряженности охватывают линии магнитной индукции (рис. 1, а). Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. При возрастании магнитной индукции направление напряженности образует левый винт с направлением вектора .

Итак, магнитное поле порождает электрическое. Максвелл допустил, что переменное электрическое поле, в свою очередь, порождает магнитное. Во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле. Линии магнитной индукции этого поля охватывают линии напряженности электрического поля (рис. 1, б) подобно тому, как линии напряженности электрического поля охватывают линии индукции переменного магнитного поля. Но только при возрастании напряженности электрического поля направление вектора индукции возникающего магнитного поля образует правый винт с направлением вектора .

Итак:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать систему уравнений, описывающих взаимные превращения электрического и магнитного полей, то есть систему уравнений электромагнитного поля.

После открытия взаимосвязи между электрическим и магнитным полями стало ясно, что эти поля не существуют обособленно, независимо одно от другого. Нельзя создать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и электрическое поле. И наоборот, переменное электрическое поле не может существовать без магнитного.

Переменные электрическое и магнитное поля существуют одновременно и образуют единое электромагнитное поле.

Электромагнитное поле – это особая форма материи – совокупность электрического и магнитного полей -  с помощью которой осуществляется электромагнитное взаимодействие.

Материальность электромагнитного поля:

  1. 1. Можно зарегистрировать.
  2. 2. Существует независимо от нашей воли и желания.
  3. 3. Имеет большую, но конечную скорость.

Разрабатывая теорию электромагнитного поля Д.Максвелл в 60-х годах IXX века теоретически обосновал возможность существования электромагнитных волн и даже вычислил скорость их распространения. Она совпала со скоростью света v=с=3*108м/с. Это дало Максвеллу основание сделать заключение: свет – это один из видов электромагнитных волн.

Вокруг неподвижного заряда существует только электрическое поле. Вокруг заряда, движущегося с постоянной скоростью, возникает электромагнитное поле. При ускоренном движении заряда происходит излучение электромагнитной волны, которая распространяется в пространстве с конечной скоростью.

Изменяющееся во времени и распространяющееся в пространстве электромагнитное поле образует электромагнитную волну.

Электромагнитные волны поперечны – векторы  и  перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны.

В электромагнитной волне происходят взаимные превращения электрического и магнитного полей.

Электромагнитные волны распространяются в веществе с конечной скоростью

Скорость электромагнитных волн в вакууме (ε = μ = 1): 300000 км/с = 3·108 м/с 

Главное условие возникновения электромагнитной волны — ускоренное движение электрических зарядов.

Радиосвязь - это разновидность беспроводной связи, у которой в качестве сигнала используются, распространяемые в пространстве, радиоволны.

Принципы радиосвязи далеко не новы. За это время радиосредства прошли путь от первых передатчиков сигналов азбуки Морзе до систем спутниковой связи. Радиоэфир наполнился музыкой радиостанций, сигналами далеких галактик и нашими разговорами. Однако с тех пор не изменилось главное - радиоволны.

Г. Герц в 1888 г. экспериментально доказал существование электромагнитных волн.

А. С. Попов повторил эти опыты и в апреле 1895 г. создал первый приемник.

7 мая 1895 г. демонстрация прибора на заседании Русского физико-химического общества. Дальность — 250 м; 1899 г.— 20 км; 1901 г. — 150 км.

Попов впервые использовал когерер и приемную антенну.

Принцип радиотелефонной связи.

Принцип радиосвязи основан на передачи сигнала от передающего устройства, содержащего передатчик и передающую антенну, путем перемещения радиоволн в открытом пространстве, приемному устройству, содержащему приемную антенну и радиоприемник.

Микрофон передатчика под воздействием звуковых колебаний вырабатывает слабый электрический ток низкой частоты. Этот сигнал поступает в усилитель низкой частоты (УНЧ). С УНЧ сигнал поступает в модулятор. Генератор высокой частоты (ГВЧ) вырабатывает незатухающие колебания высокой частоты (ВЧ), которые также поступают в модулятор, где они модулируются по амплитуде колебаниями низкой частоты и поступают в антенну. Антенна излучает в окружающее пространство электромагнитные волны, амплитуда которых также модулирована по низкой частоте. Частота ГВЧ является несущей, она и определяет частоту (и волну) передающей станции. Гармонические колебания с несущей частотой, принадлежащей какому-либо диапазону радиочастот, подвергаются модуляции в соответствии с передаваемым сообщением. Модулированные радиочастотные колебания представляют собой радиосигнал, а модулированные электромагнитные волны представляют собой радиоволну.

Свободно перемещаясь, радиоволны достигают приёмной антенны и возбуждают в ней электрические колебания, которые поступают далее в радиоприёмник. В антенне приёмника радиоволны (реально ведь передатчиков много) возбуждают переменные ЭДС индукции разных частот. Для выделения частоты нужной радиостанции применяется входной колебательный контур, который может иметь конденсатор переменной ёмкости или катушку с изменяемой индуктивностью. В любом случае изменение ёмкости или индуктивности приводит к изменению собственной частоты входного контура и, в тот момент, когда эта частота совпадает с несущей частотой радиостанции, наблюдается резонанс. Этот эффект позволяет выделить сигнал какой-то определённой радиостанции среди других. Тем не менее, сигнал остаётся осень слабым и его усиливает усилитель высокой частоты (УВЧ) приёмника. Принятый радиосигнал после усиления демодулируется. Детектор выделяет одну половинку амплитудно-модулированного сигнала, фильтр сглаживает пульсации, превращая его в низкочастотный сигнал. УНЧ усиливает НЧ-сигнал, а громкоговоритель преобразует усиленный электрический сигнал в звуковые колебания.  Выделяется сигнал, аналогичный сигналу, которым были модулированы колебания в радиопередатчике. Сигнал преобразуется при помощи соответствующего воспроизводящего устройства в сообщение, аналогичное исходному.

Структурная схема радиопередатчика и радиоприемника.

1. Задающий генератор (генератор высокой частоты) вырабатывает гармонические колебания высокой частоты ВЧ (несущая частота более 100 тыс. Гц).

2. Микрофон преобразует механические звуковые колебания в электрические той же частоты.

3. Модулятор изменяет (модулирует) по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты НЧ.

4. Усилители высокой и низкой частоты УВЧ и УНЧ усиливают по мощности высокочастотные и звуковые (низкочастотные) электрические колебания.

5. Передающая антенна излучает модулированные электромагнитные волны.

6. Приемная антенна принимает электромагнитные волны. Электромагнитная волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик.

7. УВЧ.

8. Детектор выделяет из модулированных высокочастотных колебаний низкочастотные колебания.

9. УНЧ.

10. Динамик преобразует электромагнитные колебания в механические звуковые колебания.

 

Амплитудная модуляция

Изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты называется амплитудной модуляцией.

Для получения амплитудно-модулированных электромагнитных колебаний в цепь транзисторного генератора последовательно с колебательным контуром включают катушку трансформатора. На первичную обмотку трансформатора подается напряжение звуковой частоты. На вторичной обмотке трансформатора индуцируется ЭДС той же частоты и складывается с постоянным напряжением источника тока. Изменение напряжения между эмиттером и коллектором транзистора приводит к изменению звуковой частотой, амплитуды колебаний тока высокой частоты в колебательном контуре генератора. В результате амплитуда колебаний в контуре генератора будет изменяться в такт с изменением напряжения низкочастотного сигнала на транзисторе. При изменении амплитуды сигнала НЧ меняется глубина модуляций.

Детектирование (демодуляция)

Выделение колебаний низкой звуковой частоты из промодулированных колебаний высокой частоты называют детектированием (демодуляцией).

Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или полупроводниковый диод — детектор.

Вольтамперная характеристика диода показывает, что ток в цепи течет преимущественно в одном направлении, являясь пульсирующим током.

Этот ток сглаживается с помощью фильтра.

Когда диод пропускает ток, то часть его проходит через нагрузку, а другая часть ответвляется на конденсатор.

Если диод заперт, то конденсатор частично разряжается через нагрузку. Уменьшается пульсация тока.

Через нагрузку течет ток звуковой частоты, форма колебаний воспроизводит форму низкочастотного сигнала.

Телевидение. Основные принципы.

Телевидение — система связи для трансляции и приёма движущегося изображения и звука на расстоянии.

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Схема телевидения в основном совпадает со схемой радиовещания. Разница заключается в том, что в передатчике колебания модулируются не только звуковыми сигналами, но и сигналами изображения. Оптические сигналы в передающей телекамере преобразуются в электрические. Модулированная электромагнитная волна переносит информацию на большие расстояния. В телевизионном приемнике высокочастотный сигнал делится на три сигнала: сигнал изображения, звуковой сигнал и сигнал управления.После усиления эти сигналы поступают в свои блоки и используются по назначению.

Телевизионный тракт в общем виде включает в себя следующие устройства:

1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал. Для воспроизведения движения используют принцип кино: изображение движущегося объекта (кадра) передают десятки раз в секунду (в телевидении 50 раз). Преобразование изображения кадра в электрические сигналы производится с помощью иконоскопа.

Иконоскоп - передающая вакуумная электронная трубка, преобразующая изображение кадра в серию электрических сигналов.

На экран иконоскопа проецируется изображение объекта с помощью оптической системы (объектива). Такой же сигнал получается в телевизионном приемнике, где сигнал преобразуется в видимое изображение на экране кинескопа.

2. Телекинопроектор. Преобразует изображение и звук на киноплёнке в телевизионный сигнал, и позволяет демонстрировать кинофильмы по телевидению.

3. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал, сформированный передающей камерой или телекинопроектором.

4. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: камерами, видеомагнитофонами и другими.

5. Передатчик. Несущий сигнал высокой частоты модулируется телевизионным сигналом и передается по радио или по проводам.

6. Приёмник — телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кинескоп - приемная вакуумная электронная трубка, преобразующая электрические сигналы в видимое изображение.

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

Телевизионные радиосигналы передаются в диапазоне ультракоротких волн, т. е. в пределах прямой видимости антенны. Для передачи сигнала на большие расстояния используют ретрансляторы (телепередатчики). Зона уверенного приема телевидения увеличивается благодаря использованию ретрансляционных спутников.

Башня Останкинского телецентра высотой 540 м обеспечивает прием в радиусе 120 км.

Применение радиосвязи

В наш технический век радиосвязь глубоко проникла в повседневную жизнь.

Мобильная связь. Абсолютное большинство современных людей не мыслят своей жизни без мобильного телефона. Но редко кто из них догадывается о том, что мобильный телефон – это аппарат, совмещающий в себе функции приёмника и передатчика, а мобильная связь осуществляется с помощью тех же обыкновенных радиоволн.

Радиотелефонная связь. Там, где используют рации – различные приёмопередающие устройства (полиция, скорая помощь, МЧС и т.п.), связь также осуществляется с помощью радиоволн.

Приём телевизионных сигналов с помощью антенн, которые устанавливаются на крышах домов, постепенно уходит в прошлое. Тем не менее, те же самые радиоволны переносят изображение

Спутниковые телевидение, телефонная связь, Интернет – всё это существует, благодаря радиоволнам, которые излучаются передатчиком, ретранслируются спутником и достигают приёмника.

Беспроводные мышь, клавиатура и гарнитура также содержат миниатюрные приёмопередатчики, работающие в радиоволновом диапазоне.

Biuetooch, Wi-Fi, беспроводные компьютерные сети – это также передатчики и приёмники радиоволн.

Различные радиоуправляемые модели обязательно имеют блок управления (передатчик) и приёмник в самой модели.

GPS, ГЛОНАСС – глобальные системы позиционирования, с помощью которых можно определить не только своё место положения, но и многое другое – работают также в радиоволновом диапазоне.

Радиолокация. А.С. Попов ещё в 1900 году обнаружил отражение электромагнитных волн от кораблей и указал на возможность использования этого эффекта в радиолокации. Позднее было обнаружено, что практически все вещества отражают радиоволны. Результат отражения зависит не только от рода вещества, но и от длины волны. Суть радиолокации заключается в следующем. Передатчик вырабатывает высокочастотный импульс и с помощью специальной параболической антенны посылает его в направлении объекта, например, самолёта. Радиоволна, достигая объекта, отражается от него во все стороны. Часть отражённой волны, энергия которой очень мала, улавливает приёмная параболическая антенна. Зная время t между моментом излучения и моментом приёма сигнала, легко рассчитать R расстояние до объекта: R=ct/2, где с – скорость распространения радиоволны.


Разумеется, это самая примитивная схема радиолокации. В настоящее время анализ принятого сигнала выполняется специализированным компьютером, который определяет не только расстояние, но и скорость, тип объекта, автоматически анализирует «свой-чужой», сравнивает с базой данных и выдает его тактико-технические характеристики и т.д. Имеются мобильные радиолокационные комплексы и мощные стационарные системы, отслеживающие одновременно сотни объектов вблизи поверхности Земли и в космосе над половиной территории России.

В радиоастрономии радиолокационными методами определяют расстояния до небесных тел, отслеживают движение астрономических объектов.

В космонавтике – следят за положением и перемещением различных космических аппаратов.

Карта поверхности Венеры, скрытой мощным облачным покровом, была составлена с помощью радиолокации.


Законы и формулы

© 2024. Дудко Елена | Infofiz.ru 2011-2024 | Сайт носит информационный характер | Все права защищены | Все материалы взяты из открытых источников и представлены исключительно в ознакомительных целях. Все права на статьи, книги, видео и аудио материалы принадлежат их авторам и правообладателям. Любое распространение и/или коммерческое использование без разрешения законных правообладателей не разрешается. .
Яндекс.Метрика