ВКЛ / ВЫКЛ: ИЗОБРАЖЕНИЯ: ШРИФТ: A A A ФОН: Ц Ц Ц ЦНАСТРОЙКИ:
Инфофиз
Весь мир в твоих руках, всё будет так, как ты захочешь!
г. Новороссийск
+7 (918) 465-56-36
infofiz.ru@yandex.ru

Инфофиз

Весь мир в твоих руках, всё будет так, как ты захочешь!
МЕНЮ

Физика для студентов

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников. 

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур.

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C, катушки индуктивности L и проводника с сопротивлением R 

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

 

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε. Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер

 

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими, т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U0 то в начальный момент времени t1=0 на обкладках конденсатора установятся амплитудные значения напряжения U0 и заряда q0 = CU0.

Полная энергия W системы равна энергии электрического поля Wэл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I0 в момент времени t2=T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля Wм:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t3=T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q0, напряжение тоже равно первоначальному U = U0, а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q(t) конденсатора и смещения x(t) груза от положения равновесия, а также графики тока I(t) и скорости груза υ(t) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

q(t) = q0cos(ωt + φ0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний  и период колебаний  - формула Томпсона

Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q(t) = q0cosω0t

U(t) = U0cosω0t

Для катушки индуктивности:

i(t) = I0cos(ω0t + π/2)

U(t) = U0cos(ω0t + π)

Вспомомним основные характеристики колебательного движения:

q0, U0, I0 - амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

   Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

   1. Резистор в цепи переменного тока


   Сопротивление R называют активным, потому что цепь с таким сопротивлением поглощает энергию.

   Активное сопротивлениеустройство, в котором энергия электрического тока необратимо преобразуется в другие виды энергии (внутреннюю, механическую)

   Пусть напряжение в цепи меняется по закону:   u = Umcos ωt ,

   тогда сила тока меняется по закону:                  i = u/R = IRcosωt    

   u – мгновенное значение напряжения;

   i  – мгновенное значение силы тока;

  IR - амплитуда тока, протекающего через резистор.

   Связь между амплитудами тока и напряжения на резисторе выражается соотношением RIRUR


   Колебания силы тока совпадают по фазе с колебаниями напряжения. (т.е. фазовый сдвиг между током и напряжением на резисторе равен нулю).

   2. Конденсатор в цепи переменного тока

   При включении конденсатора в цепь постоянного напряжения сила тока равна нулю, а при включении конденсатора в цепь переменного напряжения сила тока не равна нулю. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

 

 

Соотношение между амплитудами тока IC и напряжения

UC:

 

Ток опережает по фазе напряжение на угол π/2.

3. Катушка в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для той же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.

 

 

Соотношение между амплитудами тока IL и напряжения UL:

ωLILUL

 

Ток отстает по фазе от напряжения на угол π/2.

Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I0. Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги.

Векторная диаграмма на рисунке построена для случая, когда  или  В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

 

 

Векторная диаграмма для последовательной RLC-цепи

Из рисунка видно, что

 

откуда следует

 

Из выражения для I0 видно, что амплитуда тока принимает максимальное значение при условии

 

или

 

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе

 

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω0) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

 

 

Рисунок иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω. Кривые на рисунке называются резонансными кривыми.

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = - Ф’ = - (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС - электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Проблемы энергосбережения.

В связи с ростом цен на энергоносители и резким увеличением воздействия на окружающую среду со стороны человека проблема энергосбережения стала одной из важнейших.

Энергосбережение - реализация правовых, организационных, научных, производственных, технических и экономических мер, направленных на эффективное использование энергетических ресурсов и на вовлечение в хозяйственный оборот возобновляемых источников энергии.

Подавляющую часть энергоресурсов представляют в настоящее время так называемые невозобновляемые источники энергии в виде органических минеральных топлив. Это природный газ, нефть, уголь, торф и другие виды топлив. Использование этих топлив как энергетических источников приводит и к значительным выбросам как парниковых газов, так и вредных веществ (пыли, оксидов серы и азота и т.д.). Поэтому проблема энергосбережения тесно связана с решением ряда важных экологических проблем, в том числе и глобальных.

При решении проблем энергосбережения важно определить основные стратегические подходы и методы рационального использования энергоресурсов, которые могут быть как общими для всей экономики, так и специфичными для отдельных отраслей промышленности, сельского хозяйства и социальной сферы. Среди таких наиболее общих подходов в стратегии энергосбережения можно было бы назвать применение ресурсосберегающих технологий в сфере энерготехнологических объектов, использование методов математического моделирования и оптимизации при проектировании и реконструкции предприятий различных отраслей промышленности, замену дорогостоящих энергоемких видов энергоносителей, таких как электроэнергия, кокс на более дешевые, в частности, на природный газ, все более широкое использование возобновляемых источников энергии - ветра, солнца, биомассы и др.

Причинами, вызывающими потери энергии, являются сверхнормативный расход топлива, отсутствие приборов учета расхода теплоты и узлов регулирования, огромные утечки теплоты на теплотрассах, в зданиях и т.д. так, открытые двери подъездов в многоэтажных домах приводят к 6-10%-м дополнительным расходам теплоты, укрытие радиаторов декоративными панелями и шторами снижает теплоотдачу на 10-12%.

С сожалением приходится констатировать, что Россия остается страной расточительной. Энергоемкость экономики России в 3 раза выше энергоемкости мировой экономики, в 7 раз больше, чем в Японии, в 4,5 раза больше, чем в США.

В жилищно-коммунальной сфере российские нормы расхода тепла и воды в 3 раза (а по фактическим расходам — в 4-5 раз) выше, чем у наших “северных” соседей — Финляндии и Норвегии.

Нерациональное использование энергоресурсов (особенно газа, угля, мазута) оценивается в 500 млн. т или порядка 2/3 всего объема потребления первичных энергетических ресурсов. Таким образом, ежегодно в России сливается в канализацию, выбрасывается через дымовые трубы, вылетает в открытые окна и двери огромное количество денежных средств (это без учета экологических последствий).

Потребление энергии подразумевает преобразование у потребителя полученной энергии в форму, требующуюся потребителю.

Основная часть тепловой энергии идет на отопление. Отопление - это компенсация тепловых потерь в окружающую среду данного помещения, объекта при условии поддержания в нем заданной температуры. Если температура в помещении больше, чем снаружи, то всегда имеется тепловой поток, называемый теплопотерями. Этот поток никогда не равен нулю (только при равенстве температур). т. е. все тепло, введенное в помещение, в конце концов оказывается в окружающей среде. Другое дело - величина, интенсивность этого потока (количество тепла в единицу времени). Она зависит от термического сопротивления наружных ограждений - стен, окон, потолка, пола и т. д. (толщина деленная на теплопроводность). Очевидно, увеличивая толщину и переходя на более совершенный теплоизоляционный материал, можно уменьшить теплопотери, уменьшить необходимую мощность системы отопления, уменьшить расход топлива на получения тепловой энергии.

В системах отопления тепло передается в помещении при помощи нагревательных (отопительных) приборов; обычно это чугунные и стальные радиаторы и конвекторы. Для повышения эффективности работы отопительных приборов следует:

1)  не ограждать их декоративными решетками;

2)  не заглублять в ниши;

3)  использовать темную окраску;

4)  при большом количестве секций делить на несколько батарей;

5)  не располагать их высоко;

6)  при установке на наружных стенах применять теплоизоляцию со стороны стены;

7)  иметь отключающий и регулирующий вентиль;

8)  следить за чистотой межреберного пространства в конвекторах.

По условиям энергосбережения недопустимо использовать электроэнергию для отопления зданий, т. к. для производства единицы электроэнергии необходимо несколько единиц тепловой (получающейся при сжигании топлива). Конечно, бывают единичные случаи, когда вынуждены применять электрообогрев, но надо стремиться к получению теплоты при сжигании топлива, ибо КПД в этом случае близко к 100%. Отрицательные факторы при этом - топливное хозяйство, необходимость очистки газов, пожарная безопасность. При правильном использовании совершенных теплогенераторов огневого типа эффект энергосбережения безусловен.

Источники энергии планеты делятся на возобновляемые и невозобновляемые.

Возобновляемые - это ресурсы, энергия которых непрерывно восстанавливается природой: энергия рек, морей, океанов, солнца, ветра, земных недр и т. п. (солнечная энергия, ветер, энергия речной воды, энергия морских приливов, геотермальная энергия, биомасса, отходы (промышленные и бытовые))

Невозобновляемые - это ресурсы, накопленные в природе ранее, в далекие геологические эпохи, и в новых геологических условиях практически не восполняемые (органические топлива: уголь, нефть, газ, торф). К невозобновляемым энергоресурсам относится также ядерное топливо.

Энергетика на ископаемом топливе (тепловые, конденсационные электрические станции, котельные) стала традиционной. Однако оценка запасов органического топлива на планете с учетом технических возможностей их добычи, темпов расходования в связи с ростом энергопотребления показывает ограниченность запасов. Особенно это касается нефти, газа, высококачественного угля, представляющих собой ценное химическое сырье, которое сжигать в качестве топлива нерационально и расточительно. Отрицательное влияние оказывает сжигание больших количеств топлива в традиционных энергетических установках на окружающую среду: загрязнение, изменение газового состава атмосферы, тепловое загрязнение водоемов, повышение радиоактивности в зонах ТЭС, общее изменение теплового баланса планеты.

Практически неисчерпаемы возможности ядерной и термоядерной энергетики, но с нею связаны проблемы теплового загрязнения планеты, хранения радиоактивных отходов, вероятных аварий энергетических гигантов.

В связи с этим во всем мире отмечается повышенный интерес к использованиюнетрадиционных возобновляемых источников энергии. Их природа определяется процессами на Солнце, в глубинах Земли, гравитационным взаимодействием Солнца, Земли и Луны. Установки работающие на возобновляемых источниках, оказывают гораздо меньшее воздействие на окружающую среду, чем традиционные потоки энергии, естественно циркулирующие в окружающем пространстве. Экологическое воздействие энергоустановок на возобновляемых источниках в основном заключается в нарушении ими естественного ландшафта.

В настоящее время возобновляемые энергоресурсы используются незначительно. Их применение крайне заманчиво, многообещающе, но требует больших расходов на развитие соответствующей техники и технологий.

Возобновляемые источники энергии по их качеству условно делят на три группы:

1.Источники механической энергии, обладающие довольно высоким качеством:

  • ветроустановки - порядка 30%,
  • гидроустановки - 60%,
  • волновые и приливные станции - 75%.

2.Источники тепловой энергии:

  • прямое или рассеянное солнечное излучение,
  • биотопливо, обладающее качеством не более 35%.

3.Источник энергии, использующие фотосинтез и фотоэлектрические явления, имеют различное качество на разных частотах излучения; в среднем КПД фотопреобразователей составляет порядка 15%.

Основными нетрадиционными и возобновляемыми источниками энергии являются гидро-, ветроэнергетические, солнечная энергия, биомасса, твердые бытовые отходы.

Известно два направления использования солнечной энергии. Наиболее реальным является преобразование солнечной энергии в тепловую и использование в нагревательных системах. Второе направление - системы непрямого и прямого преобразования в электрическую энергию.

В системах непрямого преобразования солнечной энергии в электрическую - на гелиотермических электростанциях солнечная энергия, аналогично энергии органического топлива на ТЭС, превращается в тепловую энергию рабочего тела, например, пара, а затем в электрическую. Можно создать гелиотермические электростанции мощностью до нескольких десятков - сотен мегаватт. Концентрация солнечной энергии может осуществляться с помощью рассредоточенных коллекторов в форме параболоидов диаметром более 30м.

К сожалению, КПД преобразования солнечной энергии в электрическую на гелиотермических электростанциях составляет не более 10%, а стоимость получаемой электроэнергии несопоставима с ее стоимостью на ТЭС и даже АЭС. Серьезная проблема - непостоянство солнечного излучения в течении суток, его зависимость от времени года. Для обеспечения круглосуточного энергоснабжения требуется аккумулирование энергии. В этой связи рациональна совместная работа гелиотермической и гидроаккумулирующей электростанций.

Заманчиво и многообещающе прямое превращение солнечной энергии в электрическую с помощью солнечных элементов (рис.3.4), в которых используется явление фотоэффекта. В настоящее время наиболее совершенны кремниевые фотоэлементы. Их КПД составляет не более 15%, и они очень дороги.

Гидроэнергетика - это область наиболее развитой энергетики на возобновляемых ресурсах, использующая энергию падающей воды, волн и приливов.

Цель гидроэнергетических установок - преобразование потенциальной энергии воды в механическую энергию вращения гидротурбины.

Принципиальная схема производства электроэнергии на гидроэлектростанции представлена на рис.3.5. С помощью плотины в водохранилище создается запас потенциальной энергии воды. Через подводящий (напорный) водопровод вода под напором подается на турбину, с помощью которой кинетическая энергия падающей воды превращается в механическую энергию вращения турбины и далее вала электрогенератора. КПД превращения энергии воды в электрическую энергию в гидроэнергетических установках оказывается порядка 50%.

Рис.3.5. Схема гидроэлектростанции.

1-электрогенератор; 2 – приводной ремень; 3 – гидротурбина; 4 – сопло; 5 – вентиль; 6 – водовод; 7 – плотина; 8 – решетка.

Основные параметры, от которых зависит мощность ГЭС,- это расход воды, т. е. количество воды, подаваемой на турбину в единицу времени, и напор-перепад между водной поверхностью водохранилища и уровнем установки гидроагрегата. Поэтому мощность ГЭС, количество и стоимость вырабатываемой ею электроэнергии в конечном итоге зависят от типографических условий в районе размещения водохранилища и ГЭС.

Наиболее сложные проблемы гидроэнергетики - ущерб, наносимый окружающей среде водохранилищами (уничтожение уникальной флоры и фауны, затопление плодородных почв, климатические изменения, потенциальная угроза землетрясений и др.), заиливание гидротурбин, их коррозия, большие капитальные затраты на сооружение ГЭС.

Ветроэнергетика. Энергия ветра на земном шаре оценивается в 175-219 тыс. ТВт/ч в год. Это примерно в 2,7 раза больше суммарного расхода энергии на планете.

Постоянные воздушные течения к экватору со стороны северного и южного полушарий образуют систему пассатов. Существуют периодические движения воздуха с моря на сушу и обратно в течении суток - бризы и года - муссоны. Полезно может быть использовано лишь 5% указанной величины энергии ветра. Используется же значительно меньше. В наше время она используется для выработки электроэнергии. Это - наиболее эффективный способ утилизации энергии ветра. В ветроэнергетической установке (ВЭУ) кинетическая энергия движения воздуха превращается в энергию вращения ротора генератора, который вырабатывает электроэнергию. Выходная мощность установки пропорциональна площади лопастей ветрового ротора и скорости ветра в кубе. Поэтому ветроэнергетические установок большой мощности оказываются крупногабаритными, ведь скорость ветра в среднем бывает небольшой.

Для защиты от разрушения сильными случайными порывами ветра установки проектируется со значительным запасом мощности. Трудности в использовании ветроустановок связаны с непостоянством скорости ветра. Приходится управлять частотой вращения ветроколеса и согласовывать ее с частотой вращения электрогенератора. Кроме того, в периоды безветрия электроэнергия не производится. Для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы энергии. Крупномасштабное применение ВЭУ в каком-то одном районе может вызвать значительные климатические изменения, испортить ландшафт, ВЭУ создают шум и электромагнитные помехи.

Энергия биомассы.

Под действием солнечного излучения в растениях образуется органические вещества и аккумулируется химическая энергия. Этот процесс называется фотосинтезом. Животные существуют за счет прямого или косвенного получения энергии и вещества от растений. Этот процесс соответствует трофическому уровню фотосинтеза. В результате фотосинтеза происходит естественное преобразование солнечной энергии.

Вещества, из которых состоят растения и животные, называют биомассой. Посредством химических или биохимических процессов биомасса может быть превращена в определенные виды топлива: газообразный метан, жидкий метанол, твердый древесный уголь. Продукты сгорания биотоплива путем естественных экологических или сельскохозяйственных процессов вновь превращаются в биотопливо. Система круговорота биомассы показана на рис.3.8.

Энергия биомассы может использоваться в промышленности, домашнем хозяйстве. Так, в странах, поставляющих сахар, за счет отходов его производства покрывается до 40% потребностей в топливе. Биотопливо в виде дров, навоза и ботвы растений применяется в домашнем хозяйстве примерно 50% населения планеты для приготовления пищи, обогрева жилищ.

Решение проблемы энергосбережения требует повышения уровня сознательности как всего населения, так и каждого отдельного человека. Необходимо обращать особое внимание на применение в жилых домах новых энергосберегающих технологий, современных теплоизоляционных материалов, стеклопакетов для дверей и окон, использование экономичных бытовых приборов, осветительных ламп.

Частные домовладельцы используют почти 30% всей получаемой энергии, что составляет почти столько же, сколько и промышленность, и больше, чем весь, вместе взятый, транспорт. Большая часть расходуемой энергии (80%) идет на отопление помещений.

Диаграмма потребления энергии в частном домовладении

Ошибочной является экономия на теплоизоляции дома, так как ее почти невозможно улучшить в будущем.

Основные принципы достижения низкого энергопотребления:

1.  Хорошие теплоизолирующие свойства строительных элементов (стен, окон, крыши, пола, подвала).

2.  Добросовестное выполнение теплоизоляции: недопущение теплопотерь; плотная оболочка строения (защита от ветра и т. п.);

3.  Пассивное использование солнечной энергии и ее аккумулирование, суточное или сезонное;

4.  Управляемый воздухообмен (по возможности - возвращение тепла).

5.  Хорошо регулируемые отопительные устройства.

6.  Энергоэкономное обеспечение горячей водой, возможно, посредством солнечной энергии в летнее время.

7.  Устранение бесполезных расходов электроэнергии.

Электрическая энергия. Современная квартира, как правило, оборудована множеством электрических устройств: плита, холодильник, телевизор, магнитофон, стиральная машина, чайник, кофеварка, приемник, осветительные приборы и т. д.

Электроэнергия достаточно ценна и ее следует расходовать очень бережно. Рис. 8.9 дает представление о том, сколько электроэнергии потребляет в среднем за год каждый прибор.

Значение этой проблемы также очень велико с экологической и финансовой точки зрения. На каждый сэкономленный кВт∙ч энергии приблизительно на 3 кВт∙ч снижается общая энергетическая нагрузка электростанции. Кроме того, стоимость электроэнергии в домашнем хозяйстве значительно дороже кВт∙ч топливного сырья. Результаты такой экономии очевидны. Поэтому необходимым является использование всех возможностей для экономии электроэнергии.

Приобретая приборы, необходимо следить за их энергоемкостью.

Современные электроприборы в домашнем хозяйстве потребляют почти что в 10 раз меньше электроэнергии, чем аналогичные 10-летней давности. Если очень экономичный прибор и дороже (правда, не всегда) среднего или неэкономичного, то почти всегда дополнительные затраты на него возвращаются благодаря экономии электроэнергии. Это касается прежде всего традиционных ламп накаливания в сравнение с новыми экономичными компакт-лампами.

Электроплита. Наверняка вам уже приходилось сталкиваться со следующим явлением. Закипел на плите чайник, конфорка отключена, но чайник продолжает неистово кипеть. Простой совет: отключение конфорки заранее, еще до закипания чайника на 2–3 минуты, сбережет вам до 20% электрической энергии. Момент отключения вы можете без труда установить по характерному шуму нагреваемой воды, который та начинает производить незадолго до закипания. Нагрев воды до кипения будет продолжаться и после отключения за счет тепловой инерции раскаленной конфорки.

Кстати, пользование электрическим чайником предпочтительнее, чем кипячение воды на плите. КПД чайника 90%, а конфорок электроплиты 50-60%. В этом случае, пользуясь чайником, можно сберечь до 40% электрической энергии. Иными словами, израсходовав одно и то же количество электроэнергии, в чайнике можно нагреть до кипения воды почти вдвое больше, чем на плите. А рекордсменом по эффективности является обычный кипятильник. При его применении практически вся потребляемая электроэнергия расходуется на нагрев воды.

После приготовления пищи одна или две конфорки, как правило, остаются горячими. Следует поставить на них холодную воду перед тем, как заливать ее в чайник или кофеварку. Этим можно сберечь от 10 до 30% электроэнергии (в зависимости от температуры отключенной конфорки) при последующем кипячении, поскольку температура воды, заливаемой в чайник, будет не 8-10°С (температура холодной воды из-под крана), а 25-40°С (после подогрева на остывающей конфорке). Кстати, для приготовления как пищи, так чая и кофе желательно пользоваться предварительно отстоявшейся водой, а не из0под крана. Во-первых, отстаиваясь, вода нагревается почти до комнатной температуры (а это примерно 10% энергосбережения при ее последующем кипячении). Во-вторых, из воды частично уходят элементы, которые используются при ее обеззараживании (например, хлор), что важно для здоровья.

Примерно 30-40% потребляемой в доме электрической энергии приходится на холодильник. Необходимо его регулярно размораживать. Это даст 3-5% снижения потребления электроэнергии. Желательно, чтобы холодильник был установлен в наиболее холодном месте комнаты (у наружной стены), подальше от нагревательных приборов.

Следует чаще пользоваться настольной лампой, которая с лампочкой мощностью 30 Вт позволяет достичь лучшей освещенности на рабочем столе, чем люстра с тремя и даже пятью лампочками общей мощностью 180-300- Вт. В результате двойной выигрыш: сохранение зрения и сбережение электрической энергии.

В настоящее время в продаже появились лампы КЛЛ (компактные люминесцентные лампы), которые потребляют в 6-7 раз меньше электрической энергии по сравнению с лампами накаливания при одинаковой освещенности. Поскольку новые лампы намного дороже существующих, широкое их применение вряд ли возможно, так как цена на электричество для населения ниже себестоимости. По мере увеличения цены на электроэнергию ожидается, что популярность ламп КЛЛ будет расти.

Очень важно также отметить, что побуждение к энергосбережению должно опираться не только на экономическую выгоду, но и на внутреннее убеждение. А дается это только постоянным воспитанием человека, формированием его поведения, здоровых потребностей. Не за горами тот час, когда всему человечеству придется задуматься о последствиях дальнейшего “прогресса”, который, по сути дела, означает гибель для всего живого. Наверняка речь пойдет уже не о развитии, а об ограничении потребностей, особенно в так называемых развитых странах, где их уровень чрезвычайно высок. Любая новая вещь, прибор, устройство, услуга – это дополнительные энергозатраты, дополнительный урон природе.

В масштабах страны в первую очередь ставится задача использования современных энергосберегающих технологий в промышленности, позволяющих снизить затраты энергии на единицу выпускаемой продукции.

Государственная программа «Энергосбережение и повышение энергетической эффективности на период до 2020 года»

Основная цель Программы - обеспечение рационального использования топливно-энергетических ресурсов за счёт реализации энергосберегающих мероприятий на основе широкомасштабного внедрения наиболее энергоэффективных технологий, повышения энергетической эффективности в секторах экономики и субъектах Российской Федерации и снижения энергоёмкости ВВП.

Основные задачи Программы:

  • обеспечение устойчивого процесса повышения эффективности энергопотребления в секторах российской экономики, в том числе за счёт запуска механизмов стимулирования энергосбережения и повышения энергетической эффективности в различных сферах экономики Российской Федерации, реализации типовых энергосберегающих проектов, активизирующих деятельность хозяйствующих субъектов и населения по реализации потенциала энергосбережения;
  • сохранение и расширение потенциала экспорта энергоресурсов и доходной части бюджета за счёт сокращения неэффективного потребления энергии на внутреннем рынке;
  • снижение объёмов выбросов парниковых газов.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными электромагнитными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

У свободных колебаний со временем амплитуда уменьшается и они затухают. Для того, чтобы колебания не затухали, необходимо воздействовать на колебательную систему внешней периодически изменяющейся силой. Такие колебания называют вынужденными.

Вынужденные электрические колебания называют переменным электрическим током.

Электрический ток, изменяющийся со временем по направлению и по величине по гармоническому закону, называют переменным током.

Рассмотрим переменный электрический ток, изменяющийся со временем по гармоническому закону. Он представляет собой вынужденные колебания тока в электрической цепи, происходящие с частотой ω, совпадающей с частотой, вынуждающей э.д.с.

   В цепи переменного тока мощность тоже будет менять своё значение. Как правило, нам надо знать среднюю мощность. Для её вычисления удобно пользоваться действующими значениями силы тока и напряжения.

   Вольтметр и амперметр переменного тока всегда показывают действующие значения.

   Мгновенное значение переменного тока, текущего по активному сопротивлению R, определяется по закону Ома:

 

где I0 = ε0/Rамплитудное значение силы тока.

   Ток по фазе совпадает с э.д.с.

   Величина, равная квадратному корню из среднего значения квадрата мгновенного тока, называется действующим значением переменного тока.

Обозначается I.

 

   Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

 

   Действующее (эффективное) значение переменного тока и действующее (эффективное) значение напряжения равно напряжению и силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

Техника безопасности в обращении с электрическим током.

Действие электрического тока на организм человека

Опасность поражения людей электрическим током зависит от конструкции электрической сети, рода тока, рабочего напряжения, источника питания, состояния изоляции, ограждения и других факторов.

Основные причины электротравм:

  • неудовлетворительное ограждение токоведущих частей от случайного к ним прикосновения;
  • выполнение работ под напряжением без соблюдения необходимых мер безопасности;
  • неудовлетворительное заземление электроустановок;
  • выполнение работ без защитных средств, когда применение их обязательно;
  • несоответствие машин, аппаратов, кабелей и проводов условиям эксплуатации;
  • работа подъемно-транспортных машин вблизи электрических проводов воздушных линий без соблюдения необходимых мер безопасности;
  • применение переносного ручного электроинструмента, работающего на недопустимом напряжении в условиях повышенной опасности, и др

Прохождение электрического тока через организм человека оказывает действие:

- термическое,

- электростатическое,

- биологическое

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве крови, кровеносных сосудов

Электростатическое — в разложении крови

Биологическое — в раздражении живых тканей организма, что может привести к прекращению деятельности органов кровообращения и дыхания

Факторы, влияющие на исход поражения человека электрическим током

- величина тока

- его напряжения

- частота

- сопротивление человека

- продолжительность воздействия

- пути тока

- индивидуальных свойств человека

- условия окружающей среды

Для человеческого организма опасны как переменный, так и постоянный ток. Наиболее опасен переменный ток, имеющий частоту 50 Гц; ток частотой 400 Гц менее опасен.

В результате действия электрического тока человек может получить электрический удар, вызывающий поражение его внутренних органов, либо электротравму, то есть наружные поражения ткани.

Виды электрических травм:

Токовой ожог — ожог кожи в месте контакта тела с токоведущей частью в электроустановках с напряжением не выше 2 кВ. Электрическая дуга, обладающая высокой температурой и большой энергией, может вызывать обширные ожоги тела, обугливание и даже бесследное сгорание больших участков тела.

Электрические знаки — это пятна серого и бледно-желтого цвета, царапины, ушибы на поверхности кожи человека, подвергнувшейся воздействию тока. Форма знака может соответствовать форме токоведущей части, которой коснулся пострадавший. Лечение электрических знаков в большинстве случаев завершается благополучно, пораженное место восстанавливает чувствительность и эластичность.

Металлизация кожи - проникновение в верхние слои кожи мельчайших частиц металла. Работы, при которых есть вероятность возникновения электрической дуги, следует выполнять в очках, а одежда работающего должна быть застегнута на все пуговицы.

Электроофтальмия — это воспаление наружных оболочек глаз в результате воздействия мощного потока ультрафиолетовых лучей при электрической дуге.

Электрический удар – поражение организма, при котором наблюдаются явления паралича мышц опорно-двигательного аппарата, мышц грудной клетки, мышц желудочков сердца.

Степени электрического удара:

Ощутимый ток – вызывающий ощутимые раздражения

Неотпускающий ток – вызывающий непреодолимые судорожные сокращения мышц руки, в которой зажат проводник

Фибрилляционный ток – вызывающий фибрилляцию сердца

отпускающий ток

Переменный ток

0,6 – 1,5 мА

Постоянный ток

5 – 7 мА

неотпускающий ток

Переменный ток

10 – 15 мА

Постоянный ток

50 – 80 мА

фиблилляционный ток

Переменный ток

0,1 – 5 А

Постоянный ток

0,3 – 5 А

Оказание первой доврачебной помощи при поражении электрическим током

Спасение жизни человека, пораженного электрическим током, во многом зависит от быстроты и правильности действий оказывающих ему помощь лиц. Доврачебную помощь нужно начать оказывать немедленно, по возможности на месте происшествия, одновременно вызвав медицинскую помощь.

Прежде всего нужно как можно скорее освободить пострадавшего от действия электрического тока. Если нельзя отключить электроустановку от сети, то следует сразу же приступить к освобождению пострадавшего от токоведущих частей, используя при этом изолирующие предметы. Если он находится на высоте, то необходимо предотвратить возможность его травмирования при падении.

Освобождая человека от напряжения до 1000 В, следует воспользоваться канатом, палкой, доской и другим сухим предметом, не проводящим ток. Пострадавшего можно оттянуть за сухую одежду. При оттаскивании его за ноги не следует касаться обуви или одежды без изоляции своих рук, так как обувь и одежда могут быть сырыми и проводить электрический ток. Чтобы изолировать руки, нужно воспользоваться диэлектрическими перчатками, а при их отсутствии обмотать руку любой сухой материей. При этом рекомендуется действовать одной рукой.

От токоведущих частей напряжением свыше 1000 В пострадавшего следует освобождать с помощью штанги или изолирующих клещей, рассчитанных на соответствующее напряжение. При этом надевают диэлектрические перчатки и боты. Важно помнить об опасности шагового напряжения, когда провод лежит на земле.

Если нельзя быстро отключить питание линии электропередачи, то нужно замкнуть провода накоротко, набросив на них гибкий провод достаточного сечения. Один конец последнего предварительно заземляют (присоединяют к металлической опоре, заземляющему спуску и др.). Если пострадавший касается одного провода, то достаточно заземлить только этот провод. Доврачебная помощь после освобождения пострадавшего зависит от его состояния. Если он в сознании, то нужно обеспечить ему на некоторое время полный покой, не разрешая ему двигаться до прибытия врача.

Если пострадавший дышит очень редко и судорожно, но прощупывается пульс, надо сразу же делать искусственное дыхание по способу "изо рта в рот" или "изо рта в нос".

При отсутствии дыхания и пульса, расширенных зрачках и нарастающей синюшности кожи и слизистых оболочек нужно делать искусственное дыхание и непрямой (наружный) массаж сердца. Оказывать помощь нужно до прибытия врача. Известны случаи, когда искусственное дыхание и массаж сердца, проводимые непрерывно в течение 3...4 ч, возвращали пострадавших к жизни.

Правила по технике безопасности:

1. Помни! Будь осторожен при обращении с электричеством! При работе с электроприборами необходимо соблюдать правила техники безопасности и правила эксплуатации приборов. Перед применением любого нового электроприбора нужно внимательно изучить инструкцию, и если по инструкции он должен быть заземлен, то без заземления прибор использовать нельзя!

2. Чтобы не попасть под действие электрического тока, никогда не подходи близко к трансформаторным подстанциям. Оборудование в них находится под большим напряжением.

3. Смертельно опасно подходить к любым провисшим или оборванным проводам. Если провод оборван и лежит на земле, к нему нельзя приближаться больше, чем на 10 м.

4. В процессе эксплуатации электроприборов запрещается:

  • пользоваться прибором, если при его включении в корпусе наблюдается искрение;
  • одновременно включать в электросеть большое количество электроприборов, суммарная мощность которых превышает максимальную потребляемую мощность;
  • допускать нагревание розеток или частое срабатывание предохранителей;
  • прикасаться руками к электролампам, элементам проводки, выключателям и переключателям, находясь в воде или стоя босиком на мокром полу;
  • прикасаться влажными руками к включенным электросеть приборам, выключателям, розеткам, цоколям электролампочек;
  • касаться металлических предметов, водопроводных кранов, канализационных устройств, если вы держите в руках электроприбор, включенный в сеть;
  • прикасаться к оголенным концам проводов, ремонтировать находящиеся под напряжением выключатели, розетки, патроны, электроприборы 9сеть перед началом ремонтных работ нужно обесточить);
  • оставлять без присмотра электроприборы, включенные в сеть, особенно такие как электроутюги, электроплитки, обогреватели;
  • допускать попадание на электрические приборы влаги;
  • перегибать, перетирать и увлажнять электрические кабели и шнуры;
  • прибивать к стене или полу, связывать или убирать под ковер удлинители и соединительные провода;
  • ставить включенные в сеть электроприборы на подставки из легковоспламеняющихся материалов;
  • использовать самодельные предохранители;
  • располагать электроприборы на расстоянии ближе 0,5 м от штор, занавесей и других легковоспламеняющихся материалов;
  • допускать соприкасание электроламп и тканевых абажуров;
  • при уходе из дома оставлять включенными электроприборы.

Законы и формулы

© 2024. Дудко Елена | Infofiz.ru 2011-2024 | Сайт носит информационный характер | Все права защищены | Все материалы взяты из открытых источников и представлены исключительно в ознакомительных целях. Все права на статьи, книги, видео и аудио материалы принадлежат их авторам и правообладателям. Любое распространение и/или коммерческое использование без разрешения законных правообладателей не разрешается. .
Яндекс.Метрика