Font Size

SCREEN

Layout

Menu Style

INFOFIZ

Поиск по сайту

Понедельник, 25 Февраль 2013 16:10

Фотография

Оцените материал
(2 голосов)

Роль света в области фотографии.

   Исследование излучения и поглощения света, позволило, в свое время, сделать ряд важных открытий.

   Сама же световая частица была названа квантом света или фотоном.

Фотон

   Такими открытиями являются:

  • квантовые свойства материи, законам которых подчиняется поведение всех микрочастиц;
  • корпускулярные свойства света при поглощении, а при распространении - волновые свойства;
  • существование корпускулярно-волнового дуализма у всех элементарных частиц.
  • существование давления света на препятствие (впервые было обнаружено и измерено русским физиком П.Н.Лебедевым.)
  • химические реакции, происходящие под действием света.

   Остановимся подробней на последнем пункте и дадим характеристику химическим реакциям, протекающим под действием светового потока.

   Во-первых, химическое действие света проявляется в превращении и расщеплении молекул.

   Фотохимическими реакциями называются всякие химические процессы, протекающие под действием видимого света и ультрафиолетовых лучей.

   Важнейшей характеристикой фотохимического процесса является – фотосинтез. Также к фотохимическим реакциям относятся - взаимодействие хлора с водородом на свету с образованием HCl распад бромистого серебра на светочувствительном слое фотопластинки, загар, выцветание тканей на солнце. В процессе фотосинтеза, под действием света и солнца, происходят важнейшие химические реакции в траве, зеленых листьях деревьев и растений ,во многих микроорганизмах.

   Фотосинтезом называется процесс, при котором листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород.

Фотосинтез

   В результате фотосинтетической деятельности растений за все предшествующие геологические эпохи атмосфера обогатилась кислородом, а в недрах и на поверхности Земли были сконцентрированы громадные запасы восстановленного углерода и органических продуктов, которые человек и по сей день. Это - каменный уголь, нефть, горючие газы, сланцы, торфа. Фотосинтез может протекать только под действием света определенного спектрального состава. Реакция фотосинтеза протекает под действием красных лучей солнечного спектра в молекулах хлорофилла. Хлорофилл – сосредоточен в хлоропластах и является зеленым пигментом. Он находится в очень непрочном состоянии с белковыми веществами. Наличие хлорофилла является необходимым условием фотосинтеза, т.е. создания органического вещества, которое служит пищей для всех других организмов и обеспечивают существование, круговорота в системе.

   Химические свойства света были заложены в основу при создании фотографии.

   Само слово “фотография” - рисование светом, светопись, имеет греческое происхождение (“фото” свет, “графо”рисую, пишу).

   Изобретение фотографии само по себе не является открытием одного человека, очень многие выдающиеся ученые и творцы истории имеют к ней непосредственное отношение.

   Если углубиться в историю, то предпосылки к изобретению берут свое начало в IV веке до нашей эры и отображены в трудах древнегреческого мыслителя Аристотеля. Это камера-обскура. Уже в те отдаленные времена, было замечено, что луч солнца, проникая сквозь небольшое отверстие в темное помещение, оставляет на плоскости световой рисунок предметов внешнего мира. Предметы изображаются в точных пропорциях и цветах, но, по сравнению с натурой, в уменьшенных размерах и в перевернутом виде. Далее выдающийся итальянский ученый и художник эпохи Возрождения Леонардо да Винчи описал принцип работы камеры-обскура в своих трудах.

Камера-обскура

   К середине VIII века камера-обскура значительно модернизировалась, и редставляла из себя ящик с двояковыпуклой линзой в передней стенке и полупрозрачной бумагой или матовым стеклом в задней стенке. Она использовалась в качестве прибора для механической зарисовки предметов внешнего мира. Для этого достаточно было с помощью зеркала, поставить прямо перевернутое изображение и обвести карандашом на бумаге.

Камера-обскура

   В России такое устройство успешно использовалось, с помощью камеры-обскура были документально запечатлены виды Кронштадта, Петербурга, Петергофа других русских городов. В то время она носила название “машина для снимания перспектив”, и была изготовлена в виде походной палатки. Таким образом труд художников был упрощен и появилась “Фотография до фотографии”.

Машина для снимания перспектив

   Сложилось так, что именно в XVIII веке химия как наука достигла достаточного развития. А ученые ломали головы над тем, чтобы полностью механизировать процесс рисования, научившись не только фокусировать “световой рисунок” в камере-обскуре, но и надежно закреплять его на плоскости химическим путем.

Превращение оптического изображения в химический процесс.

   Огромный вклад в становление фотографии был сделан А.П.Бестужевым-Рюминым. В 1725 году, тогда еще молодой химик-любитель, впоследствии дипломат и известный государственный деятель, занимаясь составлением жидких лечебных смесей, Бестужев-Рюмин обнаружил, что под воздействием солнечного света растворы солей железа изменяют цвет. Через некоторое время немецкий анатомик и хирург И.Г.Шульце обнаружил и представил доказательства чувствительности к свету солей брома.

   В 1818 г. русский ученый Х.И.Гротгус открыто заявил, что существует связь фотохимического превращения в веществах с поглощением света. В своих докладах Гротгус четко сформулировал мысль о том, что только те лучи могут химически действовать на вещество, которые этим веществом поглощаются. Впоследствии это положение станет основным из законов фотохимии. Он также представил доказательства зависимости поглощения и излучения света от температуры. Причем было установлено, что повышение температуры увеличивает излучение света, а понижение температуры увеличивает поглощение.

   В 1842 г. английский ученый Д.Гершель и в 1843 г. американский профессор химии Д.Дрейпер, не зависимо от открытий Гротгуса установили ту же особенность. Сегодня основной закон фотохимии принято называть законом Гротгуса – Гершеля – Дрейпера.

   В дальнейшем важную роль сыграла теория Планка для понимания и объяснения закона фотохимии, согласно которой излучение света происходит прерывисто определенными и неделимыми порциями энергии, называемыми квантами.

Химическое закрепление светового изображения.

   Работа в этой области началась в первой трети прошлого столетия и была нацелена на закрепление светового изображения в камере-обскуре.

   Изобретателями фотографии принято считать Жозефа Нисефора Ньепс, Луи-Жака Манде Дагера, Вильяма Фокса Генри Тальбота. Они добились наилучших результатов среди ученых и изобретателей разных стран.

   Впервые “Солнечный рисунок” закрепил Ньепс. Для своих работ он использовал асфальт и его свойства затвердевать на солнце. Эксперимент состоял из простой процедуры. Раствор асфальта в лавандовом масле наносили на полированную оловянную пластинку, которую выставляли на солнечный свет под полупрозрачным штриховым рисунком. В местах пластинки, находившихся под непрозрачными участками рисунка, асфальтовый лак практически не подвергался воздействию солнечного света и после экспозиции растворялся в лавандовом масле. Так процедура травления и гравирования пластинки продолжалась несколько раз подряд, затем пластинку покрывали краской. В результате чего возникало рельефное изображение, свет задубливал лак в освещенных местах, а лавандовое масло вымывало незадубившиеся участки лака. Покрытые лаком пластинки применялись вместе с камерой-обскуры для формирования прочных светописных изображений, так же изображение использовалось дальше, как клише для получения копий с оригинала.

   В 1826 г. Ньепс смог с помощью камеры-обскуры получить вид из окна своей мастерской на металлической пластине покрытой тонким слоем асфальта.

 Единственный сохранившийся снимок, сделанный Ньепсом

 

   Первый снимок получил названиегелиография, что и означает “солнечный рисунок”. Он был весьма низкого качества и местность была едва различима, при том что процедура заняла восемь часов. Но именно с этого снимка началась фотография, как принято считать в истории.

   В 1835 г. Тальбот тоже зафиксировал солнечный луч, используя для этого более усовершенствованный метод. Тальбот применил бумагу, пропитанную хлористым серебром. Выдержка длилась в течение часа. Это был снимок решетчатого окна его дома. В том же году Тальботом был получен первый в мире негатив. Приложив к нему светочувствительную бумагу, приготовленную тем же способом, он впервые сделал позитивный отпечаток. Свой способ съемки изобретатель назвал калотипией, что означало “красота”. Так он показал возможность тиражирования снимков и связал будущее фотографии с миром прекрасного.

Снимок решетчатого окна дома Тальбота

 

   Одновременно с Ньепсом над способом закрепления изображения в камере-обскуре работал известный французский художник Дагер, автор знаменитой парижской диорамы. Работа над световыми картинами натолкнула его на мысль закрепить изображение. Ньепс совместно с Дагером начал работу по усовершенствованию гелиографии. К тому времени этот процесс был уже модифицирован: наносился слой серебра на металлические пластины и затем тщательно очищенная поверхность серебра обрабатывалась парами йода. В результате такой обработки на зеркальной поверхности пластинки образуется тонкая кристаллическая пленка иодида серебра – вещества, чувствительного к свету.

   После смерти Ньепса в 1833 г., Дагер настолько усовершенствовал методику Ньепса, что мог получать изображения значительно большей яркости. Он снял довольно сложный натюрморт, составленный из произведений живописи и скульптуры. Этот снимок Дагер передал потом де Кайэ, хранителю музея в Лувре. Автор экспонировал серебряную пластинку в камере-обскуре в течение тридцати минут, а затем перенес в темную комнату и держал над парами нагретой ртути. Закрепил изображение с помощью раствора поваренной соли. На снимке хорошо проработались детали рисунка как в светах, так и в тенях.

Этот натюрморт Дагер в 1837 г. передал в Лувр

 

   Свой способ получения фотоизображения изобретатель назвал собственным именем – дагеротипия – и передал его описание секретарю Парижской Академии наук.

   7 января 1839г. на заседании Академии Араго торжественно доложил ученому собранию об удивительном изобретении Дагера, заявив, что “отныне луч солнца стал послушным рисовальщиком всего окружающего”. Ученые одобрительно приняли известие, и этот день навсегда вошел в историю как день рождения фотографии.

   В августе того же года Араго от имени Академии выступил в палате депутатов французского парламента, где было принято решение сделать фотографию достоянием всего народа, а Дагеру и наследникам Ньепса назначить за открытие пожизненную пенсию.

   В России первые фотографические изображения получил выдающийся русский химик и ботаник, академик Юлий Федорович Фрицше (1808 – 1871). Это были фотограммы листьев растений, выполненные по способу Тальбота.

Фотограмма листьев растений Фрицше

   Одновременно Фрицше предложил внести существенные изменения в этот способ. Доклад Фрицше на заседании Петербургской Академии наук в 1839 г. представлял собой первую исследовательскую работу по фотографии в нашей стране и одну из первых исследовательских работ по фотографии в мире.

Механизм получения изображения.

   Опишем одну из схем, применяющуюся наиболее широко.

   Получение фотографического изображения складывается из этапов, каждый из которых определяет качество будущего изображения. Первым этапом является фотографическая съемка. Второй этап – негативный процесс. И заключительный этап – позитивный процесс. На каждом этапе есть свои “подводные камни”, умело обойдя которые, можно получить действительно качественное изображение. Например, на первом этапе от качества работы зависят художественно-эстетические достоинства снимка. На втором, умелое выполнение работ, определяет качество полученного для печати снимка негатива, и подготавливает почву для третьего этапа получения изображения - т.е. собственно фотографического снимка, где главное - правильно распределение светлых и темных тонов.

   Процесс получения фотографии основан на фотохимических процессах. Рассмотрим подробно современные процессы получения фотографии.

   При фотохимических реакциях зерна галогенидов серебра, состоящие из упорядоченно расположенных атомов серебра и галогена (напр., хлора), при экспозиции на свету разрушаются под действием нескольких фотонов. Освобожденный атом серебра соединяется с другими атомами серебра на поверхности зерна, когда падающий фотон разрывает связь между атомами серебра и хлора в молекуле. Информацией о том, что свет экспонировал эту часть пленки, служит образовавшееся в этой части крошечное пятнышко серебра. Изображение не будет видимым, даже если его рассматривать на свету.

   Превращение экспонированных зерен галогенида серебра в зерна серебра происходит на стадии проявления. Но такого превращения не происходит с теми зернами, которые подверглись воздействию света. Таким образом получается видимое негативное изображение. Но и на этой стадии неэкспонированные зерна галогенида серебра все еще светочувствительны. Поэтому обычно, при процессе фиксирования неэкспонированный галогенид серебра удаляется, реже превращается в соединение, нечувствительное к свету. Для стадии проявления характерен процесс значительного усиления. Такое усиление уникально среди фотохимических процессов. На стадии проявления только фотохимический процесс в глазу характеризуется большим усилением.

   Светокопирование – это процесс, в котором соли трехвалентного железа превращаются в соли двухвалентного железа под воздействием электромагнитного излучения. Это один из давно известных фотохимических процессов, он часто используется для размножения чертежей. При этом бумага покрывается железоаммониевой солью лимонной кислоты и калиевой солью железосинеродистой кислоты ( одна из многочисленных версий). Затем бумага экспонируется на очень ярком свету, проходящем сквозь чертеж на кальке, до тех пор, пока не образуется слабое изображение. Соединения трехвалентного железа переходят в соединения двухвалентного железа в местах, где свет попадает на бумагу. Для проявления соединения трехвалентного железа, бумага погружается в воду. Образуется синеокрашенное цианидное соединение, тем самым дающее негативное изображение. Фиксирования в этом процессе не требуется, хотя изображение не особенно стабильно в течение длительного времени. Стадия проявления в процессе светокопирования может вызывать незначительное изменение цвета.

   Позитив может быть получен при использовании других химических соединений, с помощью точно такого же процесса.

   Еще один фотохимический процесс, широко применяемый для получения копий получил название диазопроцесс. Диазосоединение – есть органическое соединение, обычно кислота. Используются для образования на бумаге среды, создающей изображение.

 

Прочитано 3995 раз
Другие материалы в этой категории: Этапы фотографического процесса »

Все права защищены

Все материалы взяты из открытых источников и представлены исключительно в ознакомительных целях, только на локальном компьютере. 
Все права на статьи, книги, видео и аудио материалы принадлежат их авторам или правообладателям и издательствам и отмечены соответствующими ссылками на первоисточники. Любое распространение и/или коммерческое использование без разрешения законных правообладателей не разрешается. 

 

Правообладателям

Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки.
Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте! Вы вносите неоценимый вклад в обучение, воспитание и развитие подрастающего поколения.

Правообладателям

Статистика

Яндекс.Метрика

 

 

 

​ 

Сейчас на сайте

Сейчас 18 гостей и ни одного зарегистрированного пользователя на сайте