Учим физику с удовольствием

У И. Ньютона возник вопрос: почему белый свет, входящий в призму в виде круглого пучка, выходит из призмы продолговатой разноцветной полосой? Направив эту полосу на вторую призму, получил белый свет.

Белый свет состоит из семи цветов. Призма разлагает белый свет на составные части.

В состав видимого света входят монохроматические волны с различными значениями длин волн. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого света. Такое излучение называется белым светом.

Свет, испускаемый, например, газоразрядными лампами и многими другими источниками, содержит в своем составе отдельные монохроматические составляющие с некоторыми выделенными значениями длин волн.

Совокупность монохроматических компонент в излучении называется спектром.

Белый свет имеет непрерывный спектр:

Зависимость показателя преломления света от частоты колебаний (или длины волны) называется дисперсией.

Разложение белого света есть следствие дисперсии.

Скорость света в вакууме не зависит от ν или λ волны и равна с = 3·108 м/с.

Если поочередно пропускать через стеклянную призму пучки монохроматического света разной цветности под одним и тем же углом падения, то увидим, что фиолетовый луч преломляется больше, чем красный. Очевидно, абсолютный показатель преломления фиолетового цвета больше, чем красного: nф>nк.

Абсолютный показатель преломления связан со скоростью распространения света в этой среде формулой:

 

Следовательно, ,  

Отсюда

 

 

Так как υфк, nф>nк для одной и той же среды, то νфк.

Значит, в одном и том же веществе скорости света для разных частот (или длин волн) различны. Различны будут и показатели преломления. Следовательно, показатель преломления света в среде зависит от его частоты.

Интерференция – явление характерное для волн любой природы: механических, электромагнитных.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков.

Интерференция волн – сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны. Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн.

Когерентными  называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.

При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета мыльных пузырей и масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Условия максимума и минимума

Если колебания вибраторов А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума:

Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн)

Δd = kλ,, где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума:   

Амплитуда результирующего колебания А = 2x0.

Условие минимума:

Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от вибраторов А и Б придут в точку С в противофазе и погасят друг друга: амплитуда результирующего колебания А = 0.

Условие минимума

Если Δd не равно целому числу полуволн, то 0 < А < 2х0.

Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн. Следовательно, в явлении интерференции света соблюдается закон сохранения энергии. В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников). Светлые полоски соответствуют максимумам энергии, темные – минимумам.

Из естественных проявлений интерференции света наиболее известно радужное окрашивание тонких плёнок (масляные плёнки на воде, мыльные пузыри, окисные плёнки на металлах), возникающее вследствие интерференции света, отражённого двумя поверхностями плёнки. В тонких плёнках переменной толщины при освещении протяжённым источником локализация интерфереционных колец происходит на поверхности плёнки, при этом данная интерференционная полоса соответствует одной и той же толщине плёнки (полосы равной толщины). В белом свете полосы окрашены.

Радужная окраска крыльев бабочек, стрекоз, жуков, перьев птиц, перламутровых раковин - все это проявление интерференции в тонких пленках.

Явление интерференции света находит широкое применение в современной технике.

Явление интерференции применяется для улучшения качества оптических приборов (просветление оптики). Отполированная поверхность стекла отражает примерно 4% падающего на нее света. Современные оптические приборы состоят из большого числа деталей, изготовленных из стекла. Проходя через каждую из этих деталей, свет ослабляется на 4%. Общие потери света в объективе фотоаппарата составляют примерно 25%, в призменном бинокле и микроскопе - 50% и т. д. Для уменьшения световых потерь в оптических приборах все стеклянные детали , через которые проходит свет, покрывают пленкой, показатель преломления которой меньше показателя преломления стекла. Толщина пленки равна четверти длины волны.

Другим применением явления интерференции является получение хорошо отражающих покрытий, необходимых во многих отраслях оптики. В этом случае используют тонкую пленку толщиной, равной четверти длины волны λ/4 из материала, коэффициент преломления которого n 2 больше коэффициента преломления n3 . В этом случае отражение от передней границы происходит с потерей полволны, так как n 1 < n 2 , а отражение от задней границы происходит без потери полволны (n 2 > n 3 ). В результате разность хода d =λ/4+λ/4+λ/2=λ и отраженные волны усиливают друг друга. Характерной особенностью такой высокоотражательной системы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения r=96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференционных светофильтров (узкополосных оптических фильтров).

Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

Интерференции света широко используется при спектральном анализе для точного измерения расстояний и углов, в рефрактометрии, в задачах контроля качествава поверхностей, для создания светофильтров, зеркал, просветляющих покрытий и др.; на явлениях интерференции света основана голография.