Font Size

SCREEN

Layout

Menu Style

INFOFIZ

Поиск по сайту

Среда, 29 Март 2017 23:18

Применение полупроводниковых приборов

Оцените материал
(0 голосов)
Полупроводниковые приборы Полупроводниковые приборы

Полупроводниковые приборыразличные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников.

К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 - 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является "интеграция" электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике — теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Транзисторы

Биполярный транзисторуниверсальный полупроводниковый усилительный прибор, выполняющий те же функции, что и электронная лампа с управляющей сеткой. По аналогии с лампой, биполярный транзистор называют полупроводниковым триодом. Его действие основано на использовании особых свойств неоднородных полупроводников. Особенность транзистора состоит в том, что между электронно-дырочными переходами существует взаимодействие – ток одного из переходов может управлять током другого.

Помимо усиления электрических колебаний, биполярные транзисторы широко используются как бесконтактные коммутационные устройства, в разнообразных генераторных схемах, для преобразования и детектирования колебаний, причём от соответствующих ламповых устройств схемы с биполярными транзисторами отличаются миниатюрностью, высокой экономичностью питания, большой механической прочностью, мгновенной скоростью к действию, большой долговечностью. Максимальные рабочие частоты самых высокочастотных биполярных транзисторов превышают 10000 МГц, наибольшие мощности – примерно 200-250 Вт. К недостаткам биполярных транзисторов относится существенная температурная зависимость их характеристик.

Основные материалы, из которых изготовляют транзисторы — кремний и германий, перспективные – арсенид галлия, сульфид цинка и широкозонные проводники.

Полевой транзисторполупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого сигналом. Полевой транзистор отличается от биполярного тем, что используемый в нём механизм усиления обусловлен носителями заряда только одного знака (электронами или дырками). Полевой транзистор называют также канальным и униполярным транзистором.

Полевые транзисторы имеют ВАХ (вольт-амперные характеристики), подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов. Это позволяет применять их в схемах, в большинстве случаев использовались электронные лампы, например, в усилителях постоянного тока с высокоомным входом, в истоковых повторителях с особо высокоомным входом, в электрометрических усилителях, различных реле времени, RS - генераторах синусоидальных колебаний низких и инфранизких частот, в генераторах пилообразных колебаний, усилителях низкой частоты, работающих от источников с большим внутренним сопротивлением, в активных RC - фильтрах низких частот. Полевые транзисторы с изолированным затвором используют в высокочастотных усилителях, смесителях, ключевых устройствах.

Полевые транзисторы имеют вольт-амперные характеристики, подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов.

Полупроводниковый диод

Полупроводниковый диоддвухэлектродный полупроводниковый прибор, действие которого основано на использовании свойств электронно-дырочного перехода. Основное свойство полупроводникового диода – односторонняя проводимость, позволяющая применять полупроводниковые диоды в качестве выпрямителей переменного тока. Прообразом современных полупроводниковых диодов был кристаллический детектор, состоящий из кристалла (карборунда, цинкита) и металлической пружинки, острие которой прижималось к поверхности кристалла. Эффект выпрямления у таких детекторов зависел от выбранной точки соприкосновения пружинки с кристаллом и отличался большой неустойчивостью, что требовало периодических поисков "чувствительной" точки. В современных точечных полупроводниковых диодах используются пластинки из кристаллов кремния или германия, а контакт металлической иглы с полупроводником подвергается особой электрической формовке. Эти меры наряду с применением герметической оболочки обеспечивают большую стабильность и долговечность точечных полупроводниковых диодов. Помимо детектирования радиосигналов всех частот вплоть до сотен тысяч МГц, точечные полупроводниковые диоды применяются для преобразования частоты, в измерительной радиоаппаратуре и т.д. и т.п. Наиболее обширную группу полупроводниковых диодов образуют плоскостные диоды, в которых электронно-дырочный переход создается теми же методами, что и в плоскостных транзисторах: вплавлением примесей, путем диффузии примесных веществ в объем исходной пластинки. Полупроводниковые диоды применяются также для многих других целей, в том числе для селекции импульсов определенной полярности, для стабилизации напряжения, в качестве управляемого конденсатора и др. Особыми разновидностями полупроводникового диода являются переключающие диоды с тремя р-п-переходами, двухбазовый диод (применяют главным образом в импульсных пусковых схемах) и туннельный диод, фотодиод и обращенный диод.

Туннельный диод

Туннельный диоддвухэлектродный диод полупроводниковый прибор, который применяется для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах. Принцип работы туннельных диодов основан на явлении квантовомеханического туннельного эффекта. Туннельные диоды применяются в широкополосных усилителях, для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах.

 Фотодиод

Фотодиодполупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под воздействием энергии светового излучения в области р-п-перехода происходит ионизация атомов основного вещества и смеси, в результате чего генерируются пары носителей заряда – электрон и дырка. Во внешней цепи, присоединенной к р-п-переходу, возникает ток, вызванный движением этих носителей. Промышленность выпускает германиевые и кремниевые фотодиоды. Разновидность фотодиода, используемого для силового преобразования лучистой энергии, – солнечная батарея, которая является важным источником питания в космической технике, но находит применение для питания аппаратуры и в земных условиях.

Полупроводниковый стабилизатор напряжения (стабилитрон)

Полупроводниковый стабилизатор напряжения (стабилитрон) – это кремниевый плоскостной полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне. Т.е., если стабилитрон рассчитан на прибивное напряжение 4,5в и напряжение до стабилитрона было, предположим, 5в, то после него его значение будет не больше 4,5в. Если напряжение, на которое рассчитан стабилитрон, в несколько раз меньше напряжения на участке до него, то он будет сильно греться, не исключена и его порча (он сгорит). Стабилитроны изготовляются для стабилизации напряжений от 3 до сотен вольт, благодаря чему находят большое применение в радиотехнике для стабилизации напряжения. Во избежание порчи стабилитрона последовательно с ним включается ограничивающий ток резистор.

Варикапспециально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью р-п-перехода и изменяется при изменении приложенного к переходу (к диоду) напряжения. С электрической цепи с варикапом, появляются составляющие тока новых частот. Это явление используется в радиотехнике для умножения и деления частоты, для параметрического усиления. Варикап может также использоваться для настройки колебательного контура, для автоматической подстройки частоты и частотной модуляции.

Варистор

Варисторполупроводниковый прибор, сопротивление которого изменяется по нелинейному закону при изменении приложенного напряжения. К варисторам относятся большинство полупроводниковых, электронных и ионных приборов. Чаще всего варисторы применяются для защиты элементов электрических схем от перенапряжений и контактов реле от разрушения, а также в стабилизаторах амплитуды в качестве элементов, снижающих нелинейные искажения, в схемах преобразования частоты.

Оптрон

Оптронполупроводниковый прибор, содержащий источник и приёмник светового излучения, которые оптически и конструктивно связаны между собой. Элементами оптрона являются источник света и фотоприёмник, но существуют оптроны, состоящие из большого количества электросветовых и фотоэлектрических преобразователей. Оптрон представляет собой сочетание в одном корпусе электросветового преобразователя (лампочки накаливания, светодиода) с фотоэлектрическим (фоторезистором, фотодиодом). Такой оптрон позволяет, например, при полной электрической изоляции двух цепей осуществлять управление током в одной цепи путем изменения тока в другой (дистанционное включение, регулирование громкости, АРУ и т.п.). Наряду с элементарным оптроном создаются сложные конструкции, включающие в себя большое число электросветовых и фотоэлектрических преобразователей. Такие оптроны аналогичны интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов.

Тиристор

Тиристорэлектропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. Те и другие представляют собой четырёхслойную структуру полупроводника с разного вида проводимостями. Крайние слои являются анодом и катодом, а третий электрод у тринисторов служит управляющим электродом. Поэтому динисторы являются переключающими диодами, а тринисторы – управляемыми. Если такой прибор включить в цепь переменного тока, то он открывается, пропуская ток в нагрузку лишь тогда, когда мгновенное значение напряжения достигает определенного уровня, либо при подаче отпирающего напряжения на специальный управляющий электрод. Маломощные тиристоры находят применение в импульсной технике. Выпускаются мощные тиристоры для применения в устройствах управления электроприводом и в мощных выпрямителях.

Фототиристор отличается от обычного тем, что в его корпусе имеется окно для облучения структуры световым потоком. Поэтому Фототиристор можно отпирать как воздействием светового потока, так и подачей на управляющий электрод электрического импульса управления. Уровень излучения, необходимый для запуска фототиристора, зависит от температуры и анодного напряжения. Для точного запуска фототиристора используют излучения лазеров и светодиодов. Применяются фототиристоры в тех областях, где необходима электрическая изоляция между управляющим сигналом силовой цепью.

Терморезисторполупроводниковый прибор, электрическое сопротивление которого изменяется при изменении температуры. Основой терморезисторов являются поликристаллические полупроводниковые материалы с электронной проводимостью – окислы так называемых переходных металлов (от титана до цинка), а также сульфиды, карбиды и нитриды некоторых металлов.

Используются терморезисторы в качестве датчиков устройств противопожарной сигнализации, тепловой защиты, для стабилизации токов и температурной компенсации в транзисторной аппаратуре.

Полупроводниковый светодиод

Полупроводниковый светодиодэто излучающий полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для непосредственного преобразования электрической энергии в энергию некогерентного светового излучения. Конструкцией светодиода предусмотрена возможность вывода светового излучения из области перехода сквозь прозрачное стекло в корпусе.

Светодиоды используются как световые индикаторы, источники излучения в оптоэлектронных парах, при работе с кино- и фототехникой, в устройствах автоматики, вычислительной и измерительной технике.

 

Прочитано 286 раз
Другие материалы в этой категории: « Физика и техника Гравитационные волны »

Теги

UGrokit web WWW Опыты Фарадея Правило Ленца Тим БернерсЛи Циклическая частота Эйнштейн Электростатика Явление электромагнитной индукции амплитуда астрономия атмосфера волна вопросы гаджеты гидростатика гидроэлектростанции диапазон радиоволн динамика дифракция жесткость закон Архимеда закон Фарадея законы Кеплера из жизни физиков изображение в линзе интерференция кинематика кинетическая энергия книги колебания компьютерная мышь космическая скорость линза магнетизм магнитное поле магнитные явления маятник молекулярная физика мощность мощность тока музыка нанотехнологии насыщенный пар неравномерное движение облака образование капель оптика отражение света параллельное соединение переменный ток период последовательное соединение почему почитать правило левой руки преломление света природа причина стресса психология работа работа тока равноускоренное движение радиоволна радиоволны разгрузка распространение радиоволн релаксация самоиндукция сила Ампера сила Архимеда сила Лоренца сила тока сила упругости скорость солнечная система солнце средняя скорость статика стресс термодинамика уравнение гармонических колебаний ускорение фаза физика звука физика и музыка формулы по физике фотография частота шнобелевская премия электрический ток электрическое поле электродинамика электролиз электромагнитная волна электромагнитная индукция энергетика энергия юмор

Все права защищены

   Все материалы взяты из открытых источников и представлены исключительно в ознакомительных целях, только на локальном компьютере. 
   Все права на статьи, книги, видео и аудио материалы принадлежат их авторам или правообладателям и издательствам и отмечены соответствующими ссылками на первоисточники. Любое распространение и/или коммерческое использование без разрешения законных правообладателей не разрешается. 
   Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки.
   Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте! Вы вносите неоценимый вклад в обучение, воспитание и развитие подрастающего поколения.

Правообладателям

Об авторе   Контакты

Статистика

Яндекс.Метрика

 

 

 

​ 

Сейчас на сайте

Сейчас 195 гостей и ни одного зарегистрированного пользователя на сайте